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Abstract

Certain space groups often permit the generation of
pairs of triple relationships involving the same three
parent reflections in different symmetry forms, giving
rise to two equally probable invariant estimates
which, because of the space-group symmetry, must
disagree by an a priori known phase shift. The 230
space groups have been examined to identify those
which permit inconsistent triples, and the complete
list which describes the forms of the pair of triples
and their phase inconsistency is given.

Introduction

Direct-methods procedures in crystallography are
usually dependent on the ability to identify and utilize
a body of linear phase-invariant relationships which
have a variable but high expected probability of being
correct. The triple phase invariants

(ph,k: On— Pt Oxn (1)

form the most important class of phase-determining
relationships, and usually provide a sufficiently large
excess of invariants, @, , =0 (modulo 2#), to enable
the individual ¢’s to be determined. The average or
expected value associated with a triple invariant is
linked to the product of the |E| magnitudes of the
three main terms

Ah,k=203/03/2|EhEkEl| (2)
with
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Z; being the atomic number of the jth atom of the
structure having N atoms in the primitive unit cell.
The distribution of &, values for a non-centrosym-
metric structure (Cochran, 1955) is given as

P(®, ) =exp (Ah,k Cos 4’)/[2’"’10(An,k)], (3)

leading to an a priori cosine estimate (Hauptman,
1966) of

g[cos (¢h,k)] = Il(Ah,k)/IO(Ah,k)- (4)
Aberrant phase invariants are those for which Dy, is
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sufficiently far from 0 (modulo 27) to cause tangent-
formula phase-refinement methods to diverge from a
solution given a basis set of essentially correct starting
phases. Empirical estimates of these cosine in-
variants (Karle & Hauptman, 1957; Vaughan, 1958;
Hauptman, 1964, 1972) may be obtained from an
algebraic average over the normal quadrupole
relationships

¢h,k+ ¢k,l+ ¢|,h+ ‘Dh»k,l—k =0 (5)

using sets of six |E| magnitudes taken from fourth-
order Karle-Hauptman determinants possessing the
invariant @, to be determined.

Inconsistent phase relationships are less precisely
identified with a particular phase invariant, and are
a consequence of space-group translational symmetry
through which a known phase shift must be absorbed
in a phasing loop involving a number of phase
invariants. The simplest example of an inconsistent
phase relationship is two Y, invariants which indicate
contradictory signs. A more familiar example is given
by inconsistent quadrupoles (Viterbo & Woolfson,
1973)

¢h,k+ ¢k,l+ (Dl,h'+ ‘Dh-k,(l—k)' =nm/24 (6)

where h’ is a non-Friedel symmetry-related form of
the vector h. An illustration in the space group
P2,2,2, is

1= @211t @518 0437
D= @618 Pi57T 0361
;= Pasat Poi1t P53z
D,=¢a27t 0381t Peas

(7)

where
D+ D+ O3+ &= 7 (modulo 27). (8)

Quartet invariants which are related to these incon-
sistent quadruples may also be seen to be inconsistent:

b, = P T Pas it @asit@se
b, = o1t @57t Qa5 @361
@, = d,+ 7 (modulo 27),

9

(10)
and characteristically involve a cross term, e.g. E; 7,
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which is a space-group extinction. It is less well
known that certain three-phase relationships in chiral
space groups have been shown to produce unique
phase-invariant probability estimates off the real
plane (Pontenagel & Krabbendam, 1983). For
example, in the space group P4, it was shown that
the most probable phase of the triple product
E;,1Ezp,1.E 55 was —45° as a consequence of an
inconsistent phase shift relating two distinct sym-
metry-permitted forms of the same three reciprocal-
lattice vectors. Hitherto, single three-phase invariants,
apart from pairs of contradictory Y, relationships,
had not been shown to be inconsistent within phasing
loops smaller than a quadruple. We here report the
reciprocal-lattice conditions for generating and com-
puting the phase-shift inconsistency for all such
possible triples in the 230 space groups. These special
relationships are also shown to occur in non-chiral
and centrosymmetric space groups.

Inconsistent three-phase invariants

Symmetry-equivalent transformations in reciprocal
space are often separated into parent- and daughter-
form operations. A parent transformation affects only
the signs of the h, k and ! components of a lattice
vector, and not the magnitudes; a daughter operation
transforms a vector as a mixed function of the h, k
and | components. Examples of the latter are the
trigonal transformation h, k,I to k,—h—k, I or the
tetragonal transformation h, k, I to k, h, I in which the
h and k indices are interchanged. The question may
be raised whether, given the triple invarianth+k+1=
0, the same three vectors may be combined in a
non-identical manner, h+k.R;+1.R, =0, where R;
is the inverse of the rotational matrix of the ith
equivalent position of the space group or its Friedel
equivalent. Clearly no independent solutions

k.(R,-D+1.(R,-I)=0 (11)

exist if R; and R, both represent parent transforma-
tions, as k would be forced to be a symmetry transfor-
mation of 1 and define a ¥, invariant. The situation
is different if either R; or R, or both represent daugh-
ter transformations, for example in space group
P4,2,2:

d)l =@t Qi3 T P13
D=t 133t P53
@&, = &, + 7 (modulo 27).

(12)

(13)

Given that examples of inconsistent triples could
exist, (11) was exhaustively applied to all 230 space
groups using Burzlaff & Hountas’s (1982) equivalent-
position generation routine to determine if solutions
existed and whether a non-zero phase shift, k.t; +
1.t,, was resultant, where the t; are the associated
translation components. The results for all space

INCONSISTENT THREE-PHASE STRUCTURE INVARIANTS

groups satisfying (11) are given in Table 1, together
with information in Tables 2 and 3 which defines the
form of the pairs of inconsistent triples and the value
of the phase-invariant discrepancy based on the par-
ticular reflections involved. In the previous example,
the first two parent reflections are 211 and 213. The
necessary conditions relating these first two parent
reflections can be found in Table 1(b) under the first
entry for space group P4,2,2 (HK-A-B-4). The HK
entry indicates that h, = h,, k, = k,; the A condition
in Table 2 gives the form of the second reflection in
the first triple as 123 (—k;, h,, L), and the B condition
gives its form as 123 (k,, —h,, I;) in the second triple.
The number 4 indicates that the phase shift is equal
to 27 (21, +3L) (modulo 27), or 180°.

Discussion

Inconsistent phase relationships provide a valuable
framework for identifying, if not correcting, potential
phasing traps in direct-methods analyses. Given that
the number of inconsistent relationships generated
from a basis of triple invariants usually represents a
small percentage of the normal consistent ones
(Viterbo & Woolfson, 1973), it is often feasible simply
to remove all those triples which enter into incon-
sistent relationships from the phasing process without
adversely introducing a large number of holes into
subsequent phase extension maps. Should it be a
problem that a structure in a particular space group
does generate a large percentage of inconsistent
relationships, cosine-invariant estimation methods
may be used to help identify the most aberrant triple
invariant in the relation so that the more reliable ones
can be retained.

An inherent weakness of cosine-invariant estima-
tion techniques, both algebraic methods and those
derived from probability distributions, is that they
generally assume only P1 or P1 symmetry. Algebraic
triples formulae, for example, will produce the same
three-phase cosine estimates from a monoclinic data
set, regardless of the space group assumed within the
lattice type for the structure. That is because the
formulae use only the | E| magnitudes of the vectors
defining normal quadrupoles, and the quadrupoles
generated for any space group within a Laue group
will be the same; space-group-specific information
such as phase relationships among the symmetry-
related reflections and phase restrictions are not
utilized. In spite of this weakness, these formulae can,
however, make a clear distinction between the esti-
mates of a pair of inconsistent triples, simply because
the | E| values selected by their second neighborhoods
are different.

Recent methods which propose to utilize the
maximum space-group symmetry in deriving the joint
probability distributions of structure factors may offer
an advantage over the P1 and P1 approximations
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Table 1. Conditions, styles and phase shifts for all space groups which can form daughter triple pairs

=k,, h; = h, and [/, = |, respectively. Single letters A to P are triple styles and numerals

HK, HL denote conditions of h, = h, and k,
0 to 19 are used for phase shifts. All symbols, except HK and HL, refer to Tables 2 and 3.

Space

Space

Triple pair

(b) Non-centrosymmetric space groups

group

Triple pair

(a) Centrosymmetric space groups
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Table 1 (cont.)

Space
group Triple pair
(b) Non-centrosymmetric space groups

Number 1 Number 2 Number3  Number 4
P4,32 HL-M-N-9 HK-A-B-2 HL-O-P-19 HK-C-D-5
14,32 HL-M-N-9 HK-A-B-2 HL-O-P-19 HK-C-D-5
P43m HL-0-P-0 HK-C-D-0 HL-M-N-0 HK-A-B-0
Fd3m HL-0-P-0 HK-C-D-0 HL-M-N-0 HK-A-B-0
143m HL-0-P-0 HK-C-D-0 HL-M-N-0 HK-A-B-0
P43n HL-0-P-6  HK-C-D-1 HL-M-N-6 HK-A-B-i
F43c HL-0-P-0  HK-C-D-0 HL-M-N-0 HK-A-B-0
143d HL-0-P-19 HK-C-D-5 HL-M-N-9 HK-A-B-2

Table 2. Styles of triples in Table 1

The first reflection is always hy, ki, I,.
Second reflection Third reflection

A -k, hy, b —h t+ky, —ky—hy, ==l
B kz, —h,, b —hy—ky, —ky+ hy, —h-1b;
C -k, h,, ~b; -h +k;, —k,—hy, L+l
D ka, —h,, =1y —hy—k,, ~ky+hy, Lty
E ky, -h,=ky, 1y, ~h, -k, -k +hytky, —1,—1;
F  —hy—k;, hy, L —h+hytky, —ky~hy, -l -1
G -k, hy+ky, by —h, +ky, ~ky—hy=ky, ~L— 1y,
H hy+ky, —h,y, b —hy—hy—k, —k t+hy, =l -1
1 —k;, hytky, —ly; —h t+k;, —ky—hy=ky, -l +1;
J hy+ky, ~hy, -l —hy—hy—ky, —k,+h;, -l +1;
K —hy—ky, hy, ~ly; —hy+hytky, —ki—hy, =l +1;
L ky, ~hy—ky, —ly; —h,— ks, =k +hytky, —L+1;
M b, ka, —hy; —h -1, —ky— ks, =h+hy;
N -bh, ka, hys —h+1, —k ks, =1, - hy;
o b, —k3, —hy; —h -1, —k ks, =L +hy;
P -1, -k, hy; ~h,+1, —k;+ ks, ~1,—=hy;

Table 3. Phase shift between the triple pairs in Table 1

Phase shift

0o 0
1 L+,
2 L+,
3 Ghtshytike+ih
4 L+l
5 3h+ihytik+ih
6 ik tik,
7 hy+il
8 htihtiktih
9 ik tik,
10k +ihyt+ik,
11 3L+t
12 3 +im+in
13 kg +ihy+2k,+i,
14 W+l
15 i+,
16 2+,
17 ih+ih
18 3k, +ik,
19 3k, +im+ik,+i,

(Castleden, 1987; Peschar & Schenk, 1987). The first
neighborhood estimate, ie. the joint probability dis-
tribution provided by the three E values of a pair of
inconsistent triples, should provide a lower estimate
than the P1 or P1 formula for the cosine invariant.
This lowered estimate would be consistent with the
phase inconsistency but would not distinguish which
of the two triples is more reliable, as both estimates
must be equal. One will of necessity have to derive
a second neighborhood distribution to obtain this
differentiation. These same conditions may also be
seen to apply to P1 triples formula distributions
based on one-wavelength anomalous-dispersion data
(Hauptman, 1982), where suitable conditioning of
the distribution will be required if one wishes to utilize
the inconsistent triples information. The simplest
remedy, however, as stated above, may be to ignore
these inconsistent relations when applying these for-
mulae. In this regard the data given in the tables will
enable one to identify the inconsistent triples for all
230 space groups.
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